Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(23): e202300549, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728070

RESUMO

A promiscuous CDP-tyvelose 2-epimerase (TyvE) from Thermodesulfatator atlanticus (TaTyvE) belonging to the nucleotide sugar active short-chain dehydrogenase/reductase superfamily (NS-SDRs) was recently discovered. TaTyvE performs the slow conversion of NDP-glucose (NDP-Glc) to NDP-mannose (NDP-Man). Here, we present the sequence fingerprints that are indicative of the conversion of UDP-Glc to UDP-Man in TyvE-like enzymes based on the heptagonal box motifs. Our data-mining approach led to the identification of 11 additional TyvE-like enzymes for the conversion of UDP-Glc to UDP-Man. We characterized the top two wild-type candidates, which show a 15- and 20-fold improved catalytic efficiency, respectively, on UDP-Glc compared to TaTyvE. In addition, we present a quadruple variant of one of the identified enzymes with a 70-fold improved catalytic efficiency on UDP-Glc compared to TaTyvE. These findings could help the design of new nucleotide production pathways starting from a cheap sugar substrate like glucose or sucrose.


Assuntos
Hexoses , Racemases e Epimerases , Humanos , Carboidratos , Difosfato de Uridina/química , Nucleotídeos , Glucose
2.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108506

RESUMO

Presbyopia is an age-related vision disorder that is a global public health problem. Up to 85% of people aged ≥40 years develop presbyopia. In 2015, 1.8 billion people globally had presbyopia. Of those with significant near vision disabilities due to uncorrected presbyopia, 94% live in developing countries. Presbyopia is undercorrected in many countries, with reading glasses available for only 6-45% of patients living in developing countries. The high prevalence of uncorrected presbyopia in these parts of the world is due to the lack of adequate diagnosis and affordable treatment. The formation of advanced glycation end products (AGEs) is a non-enzymatic process known as the Maillard reaction. The accumulation of AGEs in the lens contributes to lens aging (leading to presbyopia and cataract formation). Non-enzymatic lens protein glycation induces the gradual accumulation of AGEs in aging lenses. AGE-reducing compounds may be effective at preventing and treating AGE-related processes. Fructosyl-amino acid oxidase (FAOD) is active on both fructosyl lysine and fructosyl valine. As the crosslinks encountered in presbyopia are mainly non-disulfide bridges, and based on the positive results of deglycating enzymes in cataracts (another disease caused by glycation of lens proteins), we studied the ex vivo effects of topical FAOD treatment on the power of human lenses as a new potential non-invasive treatment for presbyopia. This study demonstrated that topical FAOD treatment resulted in an increase in lens power, which is approximately equivalent to the correction obtained by most reading glasses. The best results were obtained for the newer lenses. Simultaneously, a decrease in lens opacity was observed, which improved lens quality. We also demonstrated that topical FAOD treatment results in a breakdown of AGEs, as evidenced by gel permeation chromatography and a marked reduction in autofluorescence. This study demonstrated the therapeutic potential of topical FAOD treatment in presbyopia.


Assuntos
Catarata , Cristalino , Presbiopia , Humanos , Presbiopia/tratamento farmacológico , Envelhecimento , Catarata/tratamento farmacológico , Produtos Finais de Glicação Avançada
3.
Nutrients ; 15(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049441

RESUMO

Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars. Rare disaccharide digestibility, hepatic metabolism of monosaccharides (respirometry) and the effects of sugars on skeletal muscle insulin sensitivity (impaired glucose uptake) were investigated in, respectively, Caco-2, HepG2 and L6 cells or a triple coculture model with these cells. Glucose and fructose, but not l-arabinose, acutely increased extracellular acidification rate (ECAR) responses in HepG2 cells and impaired glucose uptake in L6 cells following a 24 h exposure at 28 mM. Cellular bioenergetics and digestion experiments with Caco-2 cells indicate that especially trehalose (α1-1α), D-Glc-α1,2-D-Gal, D-Glc-α1,2-D-Rib and D-Glc-α1,3-L-Ara experience delayed digestion and reduced cellular impact compared to maltose (α1-4), without differences on insulin-stimulated glucose uptake in a short-term setup with a Caco-2/HepG2/L6 triple coculture. These results suggest a potential for l-arabinose and specific rare disaccharides to improve metabolic health; however, additional in vivo research with longer sugar exposures should confirm their beneficial impact on insulin sensitivity in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Células CACO-2 , Arabinose/farmacologia , Arabinose/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Fígado/metabolismo , Dissacarídeos/farmacologia
4.
Food Chem ; 411: 135440, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36701921

RESUMO

The impact of glycosidic linkage of seven rare and new-to-nature disaccharides on gut bacteria was assessed in vitro. The community shift of the inocula from four donors in response to 1 % (w/v) disaccharide supplementation was captured by sequencing the 16S rRNA gene. A significant loss of bacterial alpha diversity, short lag time, low pH, and high total short-chain fatty acid displayed a faster fermentation of trehalose(Glc-α1,1α-Glc) and fibrulose(fructan, DP2-10). Bacteroides reduced in relative abundance under disaccharide supplementation suggesting a loss in complex carbohydrates metabolizing capacity. Fibrulose and l-arabinose glucoside(Glc-α1,3-l-Ara) significantly stimulated bifidobacteria but was suppressed with trehalose, ribose glucoside(Glc-α1,2-Rib), and 4'-epitrehalose(Glc-α1,1α-Gal) supplementation. Albeit insignificant, bifidobacteria increased with 4'-epikojibiose(Glc-α1,2-Gal), nigerose(Glc-α1,3-Glc), and kojibiose(Glc-α1,2-Glc). Prior conditioning of inoculum in kojibiose medium profoundly induced bifidobacteria by 44 % and 55 % upon reinoculation into kojibiose and fibrulose-supplemented media respectively. This study has demonstrated the importance of the disaccharide structure-function relationship in driving the gut bacterial community.


Assuntos
Microbioma Gastrointestinal , Trealose , Glicosídeos , RNA Ribossômico 16S , Dissacarídeos/farmacologia , Bactérias/genética , Glucosídeos
5.
Anal Biochem ; 655: 114870, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027972

RESUMO

Nucleotide sugar 4,6-dehydratases belong to the Short-chain Dehydrogenase/Reductase (SDR) superfamily and catalyze the conversion of an NDP-hexose to an NDP-4-keto-6-deoxy hexose, a key step in the biosynthesis of a plethora of deoxy and amino sugars. Here, we present a colorimetric assay for the detection of their reaction products (NDP-4-keto-6-deoxy hexoses) using concentrated sulfuric acid and an ethanolic resorcinol solution. Under these conditions, the keto-function of the dehydratase product reacts specifically with resorcinol to form an orange-red or pink complex for NDP-glucose/GDP-mannose and UDP-N-acetylglucosamine, respectively, with an absorption maximum at 510 nm. The presented assay allows reliable product detection at low concentrations and can be applied in microtiter plates. It thus allows the determination of kinetic enzyme parameters like the optimal temperature, pH, Vmax, KM and kcat, as well as the miniaturization for screening purposes with crude cell extracts. As such, this detection assay opens new possibilities for the characterization and screening of these dehydratases in 96-well plates for different research goals.


Assuntos
Colorimetria , Nucleotídeos , Carboidratos , Hexoses , Hidroliases/metabolismo , Cinética , Resorcinóis
6.
J Agric Food Chem ; 70(11): 3502-3511, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266393

RESUMO

In view of the global pandemic of obesity and related metabolic diseases, there is an increased interest in alternative carbohydrates with promising physiochemical and health-related properties as a potential replacement for traditional sugars. However, our current knowledge is limited to only a small selection of carbohydrates, whereas the majority of alternative rare carbohydrates and especially their properties remain to be investigated. Unraveling their potential properties, like digestibility and glycemic content, could unlock their use in industrial applications. Here, we describe the enzymatic production and in vitro digestibility of three novel glycosides, namely, two kojibiose analogues (i.e., d-Glcp-α-1,2-d-Gal and d-Glcp-α-1,2-d-Rib) and one nigerose analogue (i.e., d-Glcp-α-1,3-l-Ara). These novel sugars were discovered after an intensive acceptor screening with a sucrose phosphorylase originating from Bifidobacterium adolescentis (BaSP). Optimization and upscaling of this process led to roughly 100 g of these disaccharides. Digestibility, absorption, and caloric potential were assessed using brush border enzymes of rat origin and human intestinal Caco-2 cells. The rare disaccharides showed a reduced digestibility and a limited impact on energy metabolism, which was structure-dependent and even more pronounced for the three novel disaccharides in comparison to their respective glucobioses, translating to a low-caloric potential for these novel rare disaccharides.


Assuntos
Carboidratos , Dissacarídeos , Animais , Células CACO-2 , Dissacarídeos/química , Humanos , Ratos
7.
J Biol Chem ; 298(4): 101809, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271853

RESUMO

Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.


Assuntos
Hidroliases , Nucleotídeos , Açúcares , Hidroliases/química , Hidroliases/metabolismo , Nucleosídeos/química , Nucleotídeos/química , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo
8.
Nutrients ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35276968

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide and is impacted by an unhealthy diet with excessive calories, although the role of sugars in NAFLD etiology remains largely unexplored. Rare sugars are natural sugars with alternative monomers and glycosidic bonds, which have attracted attention as sugar replacers due to developments in enzyme engineering and hence an increased availability. We studied the impact of (rare) sugars on energy production, liver cell physiology and gene expression in human intestinal colorectal adenocarcinoma (Caco-2) cells, hepatoma G2 (HepG2) liver cells and a coculture model with these cells. Fat accumulation was investigated in the presence of an oleic/palmitic acid mixture. Glucose, fructose and galactose, but not mannose, l-arabinose, xylose and ribose enhanced hepatic fat accumulation in a HepG2 monoculture. In the coculture model, there was a non-significant trend (p = 0.08) towards higher (20-55% increased) median fat accumulation with maltose, kojibiose and nigerose. In this coculture model, cellular energy production was increased by glucose, maltose, kojibiose and nigerose, but not by trehalose. Furthermore, glucose, fructose and l-arabinose affected gene expression in a sugar-specific way in coculture HepG2 cells. These findings indicate that sugars provide structure-specific effects on cellular energy production, hepatic fat accumulation and gene expression, suggesting a health potential for trehalose and l-arabinose, as well as a differential impact of sugars beyond the distinction of conventional and rare sugars.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células CACO-2 , Técnicas de Cocultura , Humanos , Açúcares
9.
Chembiochem ; 22(23): 3319-3325, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34541742

RESUMO

The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-ß-d-glucosyl-d-galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-ß-d-glucosyl-d-galactose and 4-O-ß-d-glucosyl-l-arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.


Assuntos
Glicosídeo Hidrolases/metabolismo , Paenibacillus polymyxa/enzimologia , Dissacarídeos/biossíntese , Dissacarídeos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Modelos Moleculares , Estrutura Molecular , Filogenia , Especificidade por Substrato
10.
Chembiochem ; 22(18): 2777-2782, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33991026

RESUMO

2-O-Glucosylglycerol is accumulated by various bacteria and plants in response to environmental stress. It is widely applied as a bioactive moisturising ingredient in skin care products, for which it is manufactured via enzymatic glucosylation of glycerol by the sucrose phosphorylase from Leuconostoc mesenteroides. This industrial process is operated at room temperature due to the mediocre stability of the biocatalyst, often leading to microbial contamination. The highly thermostable sucrose phosphorylase from Bifidobacterium adolescentis could be a better alternative in that regard, but this enzyme is not fit for production of 2-O-glucosylglycerol due to its low regioselectivity and poor affinity for glycerol. In this work, the thermostable phosphorylase was engineered to alleviate these problems. Several engineering approaches were explored, ranging from site-directed mutagenesis to conventional, binary, iterative or combinatorial randomisation of the active site, resulting in the screening of ∼3,900 variants. Variant P134Q displayed a 21-fold increase in catalytic efficiency for glycerol, as well as a threefold improvement in regioselectivity towards the 2-position of the substrate, while retaining its activity for several days at elevated temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosídeos/síntese química , Glucosiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium adolescentis/enzimologia , Sítios de Ligação , Biocatálise , Domínio Catalítico , Glucosídeos/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Cinética , Leuconostoc mesenteroides/enzimologia , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Estereoisomerismo , Especificidade por Substrato
11.
Appl Microbiol Biotechnol ; 105(10): 4073-4087, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33970317

RESUMO

ß-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of ß-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of ß-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 ( www.cazy.org ). Since the discovery of ß-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of ß-glucan and associated ß-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules. KEY POINTS: • Discovery, characteristics, and applications of ß-glucan phosphorylases. • ß-Glucan phosphorylases in the production of functional carbohydrates.


Assuntos
beta-Glucanas , Biocatálise , Metabolismo dos Carboidratos , Glicosídeo Hidrolases/metabolismo , Humanos , Fosforilases/metabolismo
12.
Biotechnol Adv ; 48: 107705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571638

RESUMO

Short-chain Dehydrogenase/Reductase enzymes that are active on nucleotide sugars (abbreviated as NS-SDR) are of paramount importance in the biosynthesis of rare sugars and glycosides. Some family members have already been extensively characterized due to their direct implication in metabolic disorders or in the biosynthesis of virulence factors. In this review, we combine the knowledge gathered from studies that typically focused only on one NS-SDR activity with an in-depth analysis and overview of all of the different NS-SDR families (169,076 enzyme sequences). Through this structure-based multiple sequence alignment of NS-SDRs retrieved from public databases, we could identify clear patterns in conservation and correlation of crucial residues. Supported by this analysis, we suggest updating and extending the UDP-galactose 4-epimerase "hexagonal box model" to an "heptagonal box model" for all NS-SDR enzymes. This specificity model consists of seven conserved regions surrounding the NDP-sugar substrate that serve as fingerprint for each specificity. The specificity fingerprints highlighted in this review will be beneficial for functional annotation of the large group of NS-SDR enzymes and form a guide for future enzyme engineering efforts focused on the biosynthesis of rare and specialty carbohydrates.


Assuntos
Oxirredutases , Açúcares , Humanos , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Front Mol Biosci ; 8: 784142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087867

RESUMO

GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.

14.
Curr Opin Chem Biol ; 61: 43-52, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166830

RESUMO

Sugar nucleotide-modifying enzymes of the short-chain dehydrogenase/reductase type use transient oxidation-reduction by a tightly bound nicotinamide cofactor as a common strategy of catalysis to promote a diverse set of reactions, including decarboxylation, single- or double-site epimerization, and dehydration. Although the basic mechanistic principles have been worked out decades ago, the finely tuned control of reactivity and selectivity in several of these enzymes remains enigmatic. Recent evidence on uridine 5'-diphosphate (UDP)-glucuronic acid decarboxylases (UDP-xylose synthase, UDP-apiose/UDP-xylose synthase) and UDP-glucuronic acid-4-epimerase suggests that stereo-electronic constraints established at the enzyme's active site control the selectivity, and the timing of the catalytic reaction steps, in the conversion of the common substrate toward different products. The mechanistic idea of stereo-electronic control is extended to epimerases and dehydratases that deprotonate the Cα of the transient keto-hexose intermediate. The human guanosine 5'-diphosphate (GDP)-mannose 4,6-dehydratase was recently shown to use a minimal catalytic machinery, exactly as predicted earlier from theoretical considerations, for the ß-elimination of water from the keto-hexose species.


Assuntos
Redutases-Desidrogenases de Cadeia Curta/química , Sequência de Aminoácidos , Animais , Ácidos Carboxílicos/química , Catálise , Humanos , Água/química
15.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277270

RESUMO

Epimerization of sugar nucleotides is central to the structural diversification of monosaccharide building blocks for cellular biosynthesis. Epimerase applicability to carbohydrate synthesis can be limited, however, by the high degree of substrate specificity exhibited by most sugar nucleotide epimerases. Here, we discovered a promiscuous type of CDP-tyvelose 2-epimerase (TyvE)-like enzyme that promotes C2-epimerization in all nucleotide (CDP, UDP, GDP, ADP, TDP)-activated forms of d-glucose. This new epimerase, originating from Thermodesulfatator atlanticus, is a functional homodimer that contains one tightly bound NAD+/subunit and shows optimum activity at 70°C and pH 9.5. The enzyme exhibits a k cat with CDP-dglucose of ∼1.0 min-1 (pH 7.5, 60°C). To characterize the epimerase kinetically and probe its substrate specificity, we developed chemo-enzymatic syntheses for CDP-dmannose, CDP-6-deoxy-dglucose, CDP-3-deoxy-dglucose and CDP-6-deoxy-dxylo-hexopyranos-4-ulose. Attempts to obtain CDP-dparatose and CDP-dtyvelose were not successful. Using high-resolution carbohydrate analytics and in situ NMR to monitor the enzymatic conversions (60°C, pH 7.5), we show that the CDP-dmannose/CDP-dglucose ratio at equilibrium is 0.67 (± 0.1), determined from the kinetic Haldane relationship and directly from the reaction. We further show that deoxygenation at sugar C6 enhances the enzyme activity 5-fold compared to CDP-dglucose whereas deoxygenation at C3 renders the substrate inactive. Phylogenetic analysis places the T. atlanticus epimerase into a distinct subgroup within the sugar nucleotide epimerase family of SDR (short-chain dehydrogenases/reductases), for which the current study now provides the functional context. Collectively, our results expand an emerging toolbox of epimerase-catalyzed reactions for sugar nucleotide synthesis.IMPORTANCE Epimerases of the sugar nucleotide-modifying class of enzymes have attracted considerable interest in carbohydrate (bio)chemistry, for the mechanistic challenges and the opportunities for synthesis involved in the reactions catalyzed. Discovery of new epimerases with expanded scope of sugar nucleotide substrates used is important to promote the mechanistic inquiry and can facilitate the development of new enzyme applications. Here, a CDP-tyvelose 2-epimerase-like enzyme from Thermodesulfatator atlanticus is shown to catalyze sugar C2 epimerization in CDP-glucose and other nucleotide-activated forms of dglucose. The reactions are new to nature in the context of enzymatic sugar nucleotide modification. The current study explores the substrate scope of the discovered C2-epimerase and, based on modeling, suggests structure-function relationships that may be important for specificity and catalysis.

16.
J Enzyme Inhib Med Chem ; 35(1): 1964-1989, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164573

RESUMO

Although trehalose has recently gained interest because of its pharmaceutical potential, its clinical use is hampered due to its low bioavailability. Hence, hydrolysis-resistant trehalose analogues retaining biological activity could be of interest. In this study, 34 4- and 6-O-substituted trehalose derivatives were synthesised using an ether- or carbamate-type linkage. Their hydrolysis susceptibility and inhibitory properties were determined against two trehalases, i.e. porcine kidney and Mycobacterium smegmatis. With the exception of three weakly hydrolysable 6-O-alkyl derivatives, the compounds generally showed to be completely resistant. Moreover, a number of derivatives was shown to be an inhibitor of one or both of these trehalases. For the strongest inhibitors of porcine kidney trehalase IC50 values of around 10 mM could be determined, whereas several compounds displayed sub-mM IC50 against M. smegmatis trehalase. Dockings studies were performed to explain the observed influence of the substitution pattern on the inhibitory activity towards porcine kidney trehalase.


Assuntos
Inibidores Enzimáticos/síntese química , Trealase/antagonistas & inibidores , Trealose/síntese química , Alquilação , Animais , Carbamatos/química , Inibidores Enzimáticos/metabolismo , Éter/química , Hidrólise , Rim/enzimologia , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/enzimologia , Ligação Proteica , Relação Estrutura-Atividade , Suínos , Trealose/metabolismo
17.
Int J Biol Macromol ; 165(Pt B): 1862-1868, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075338

RESUMO

GDP-mannose 3,5-epimerase (GM35E) catalyzes the double epimerization of GDP-mannose to yield GDP-l-galactose. GDP-l-gulose (C5-epimer) has previously been detected as a byproduct of this reaction, indicating that C3,5-epimerization occurs through an initial epimerization at C5. Given these products, GM35E constitutes a valuable bridge between d- and l-hexoses. In order to fully exploit this potential, the enzyme might be subjected to specificity engineering for which profound mechanistic insights are beneficial. Accordingly, this study further elucidated GM35E's reaction mechanism. For the first time, the production of the C3-epimer GDP-altrose was demonstrated, resulting in an adjustment of the acknowledged reaction mechanism. As GM35E converts GDP-mannose to GDP-l-gulose, GDP-altrose and GDP-l-galactose in a 72:4:4:20 ratio, this indicates that the enzyme does not discriminate between the C3 and C5 position as initial epimerization site. This was also confirmed by a structural investigation. Based on a mutational analysis of the active site, residues S115 and R281 were attributed a stabilizing function, which is believed to support the reactivation process of the catalytic residues. This paper eventually reflected on some engineering strategies that aim to change the enzyme towards a single specificity.


Assuntos
Guanosina Difosfato Manose/metabolismo , Guanosina Difosfato/metabolismo , Hexoses/metabolismo , Racemases e Epimerases/metabolismo , Biocatálise , Domínio Catalítico , Guanosina Difosfato/química , Hexoses/química , Engenharia de Proteínas , Especificidade por Substrato
18.
Appl Microbiol Biotechnol ; 104(19): 8327-8337, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32803296

RESUMO

Cellodextrins are non-digestible oligosaccharides that have attracted interest from the food industry as potential prebiotics. They are typically produced through the partial hydrolysis of cellulose, resulting in a complex mixture of oligosaccharides with a varying degree of polymerisation (DP). Here, we explore the defined synthesis of cellotriose as product since this oligosaccharide is believed to be the most potent prebiotic in the mixture. To that end, the cellobiose phosphorylase (CBP) from Cellulomonas uda and the cellodextrin phosphorylase (CDP) from Clostridium cellulosi were evaluated as biocatalysts, starting from cellobiose and α-D-glucose 1-phosphate as acceptor and donor substrate, respectively. The CDP enzyme was shown to rapidly elongate the chains towards higher DPs, even after extensive mutagenesis. In contrast, an optimised variant of CBP was found to convert cellobiose to cellotriose with a molar yield of 73%. The share of cellotriose within the final soluble cellodextrin mixture (DP2-5) was 82%, resulting in a cellotriose product with the highest purity reported to date. Interestingly, the reaction could even be initiated from glucose as acceptor substrate, which should further decrease the production costs.Key points• Cellobiose phosphorylase is engineered for the production of cellotriose.• Cellotriose is synthesised with the highest purity and yield to date.• Both cellobiose and glucose can be used as acceptor for cellotriose production.


Assuntos
Cellulomonas , Glucosiltransferases , Celobiose , Celulose , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Especificidade por Substrato , Trioses
19.
Biotechnol J ; 15(11): e2000132, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32761842

RESUMO

In recent years, carbohydrate epimerases have attracted increasing attention as promising biocatalysts for the production of specialty sugars and derivatives. The vast majority of these enzymes are active on nucleotide-activated sugars, rather than on their free counterparts. Although such epimerases are known to have a clear preference for a particular nucleotide (UDP, GDP, CDP, or ADP), very little is known about the determinants of the respective specificities. In this work, sequence motifs are identified that correlate with the different nucleotide specificities in one of the main epimerase superfamilies, carbohydrate epimerase 1 (CEP1). To confirm their relevance, GDP- and CDP-specific residues are introduced into the UDP-glucose 4-epimerase from Thermus thermophilus, resulting in a 3-fold and 13-fold reduction in KM for GDP-Glc and CDP-Glc, respectively. Moreover, several variants are severely crippled in UDP-Glc activity, which further underlines the crucial role of the identified positions. Hence, the analysis should prove to be valuable for the further exploration and application of epimerases involved in carbohydrate synthesis.


Assuntos
Nucleotídeos , Racemases e Epimerases , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Metabolismo dos Carboidratos
20.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32561577

RESUMO

This study compares the metabolic properties of kojibiose, trehalose, sucrose, and xylitol upon incubation with representative oral bacteria as monocultures or synthetic communities or with human salivary bacteria in a defined medium. Compared to sucrose and trehalose, kojibiose resisted metabolism during a 48-h incubation with monocultures, except for Actinomyces viscosus Incubations with Lactobacillus-based communities, as well as salivary bacteria, displayed kojibiose metabolism, yet to a lesser extent than sucrose and trehalose. Concurring with our in vitro findings, screening for carbohydrate-active enzymes revealed that only Lactobacillus spp. and A. viscosus possess enzymes from glycohydrolase (GH) families GH65 and GH15, respectively, which are associated with kojibiose metabolism. Donor-dependent differences in salivary microbiome composition were noted, and differences in pH drop during incubation indicated different rates of sugar metabolism. However, functional analysis indicated that lactate, acetate, and formate evenly dominated the metabolic profile for all sugars except for xylitol. 16S rRNA gene sequencing analysis and α-diversity markers revealed that a significant shift of the microbiome community by sugars was more pronounced in sucrose and trehalose than in kojibiose and xylitol. In Streptococcus spp., a taxon linked to cariogenesis dominated in sucrose (mean ± standard deviation, 91.8 ± 6.4%) and trehalose (55.9 ± 38.6%), representing a high diversity loss. In contrast, Streptococcus (5.1 ± 3.7%) was less abundant in kojibiose, which instead was dominated by Veillonella (26.8 ± 19.6%), while for xylitol, Neisseria (29.4 ± 19.1%) was most abundant. Overall, kojibiose and xylitol incubations stimulated cariogenic species less yet closely maintained an abundance of key phyla and genera of the salivary microbiome, suggesting that kojibiose has low cariogenic properties.IMPORTANCE This study provides a detailed scientific insight on the metabolism of a rare disaccharide, kojibiose, whose mass production has recently been made possible. While the resistance of kojibiose was established with monocultures, delayed utilization of kojibiose was observed with communities containing lactobacilli and A. viscosus as well as with complex communities of bacteria from human saliva. Kojibiose is, therefore, less metabolizable than sucrose and trehalose. Moreover, although conventional sugars cause distinct shifts in salivary microbial communities, our study has revealed that kojibiose is able to closely maintain the salivary microbiome composition, suggesting its low cariogenic properties. This study furthermore underscores the importance and relevance of microbial culture and ex vivo mixed cultures to study cariogenicity and substrate utilization; this is in sharp contrast with tests that solely rely on monocultures such as Streptococcus mutans, which clearly fail to capture complex interactions between oral microbiota.


Assuntos
Bactérias/metabolismo , Microbiota , Boca/microbiologia , Açúcares/metabolismo , Xilitol/metabolismo , Dissacarídeos/metabolismo , Humanos , Cinética , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Sacarose/metabolismo , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...